Markov inequalities, Dubiner distance, norming meshes and polynomial optimization on convex bodies

We construct norming meshes for polynomial optimization by the classical Markov inequality on general convex bodies in R^d, and by a tangential Markov inequality via an estimate of Dubiner distance on smooth convex bodies. These allow to compute a (1−eps)-approximation to the minimum of any polynomial of degree not exceeding n by O((n/sqrt(eps))^(ad)) samples, with … Read more

Polynomial Optimization on Chebyshev-Dubiner Webs of Starlike Polygons

We construct web-shaped norming meshes on starlike polygons, by radial and boundary Chebyshev points. Via the approximation theoretic notion of Dubiner distance, we get a (1-eps)-approximation to the minimum of an arbitrary polynomial of degree n by O(n^2/eps) sampling points. CitationPreprint, July 2018 ArticleDownload View PDF