Sobolev Seminorm of Quadratic Functions with Applications to Derivative-Free Optimization
This paper studies the $H^1$ Sobolev seminorm of quadratic functions. The research is motivated by the least-norm interpolation that is widely used in derivative-free optimization. We express the $H^1$ seminorm of a quadratic function explicitly in terms of the Hessian and the gradient when the underlying domain is a ball. The seminorm gives new insights … Read more