Counterfactual explanations with the k-Nearest Neighborhood classifier and uncertain data

Counterfactual Analysis is a powerful tool in Explainable Machine Learning. Given a classifier and a record, one seeks the smallest perturbation necessary to have the perturbed record, called the counterfactual explanation, classified in the desired class. Feature uncertainty in data reflects the inherent variability and noise present in real-world scenarios, and therefore, there is a … Read more