Gradient Sampling Methods with Inexact Subproblem Solves and Gradient Aggregation

Gradient sampling (GS) has proved to be an effective methodology for the minimization of objective functions that may be nonconvex and/or nonsmooth. The most computationally expensive component of a contemporary GS method is the need to solve a convex quadratic subproblem in each iteration. In this paper, a strategy is proposed that allows the use … Read more