Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets
We study adjustable distributionally robust optimization problems where their ambiguity sets can potentially encompass an infinite number of expectation constraints. Although such an ambiguity set has great modeling flexibility in characterizing uncertain probability distributions, the corresponding adjustable problems remain computationally intractable and challenging. To overcome this issue, we propose a greedy improvement procedure that consists … Read more