Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets

We study adjustable distributionally robust optimization problems where their ambiguity sets can potentially encompass an infinite number of expectation constraints. Although such an ambiguity set has great modeling flexibility in characterizing uncertain probability distributions, the corresponding adjustable problems remain computationally intractable and challenging. To overcome this issue, we propose a greedy improvement procedure that consists … Read more

Step decision rules for multistage stochastic programming: a heuristic approach

Stochastic programming with step decision rules, SPSDR, is an attempt to overcome the curse of computational complexity of multistage stochastic programming problems. SPSDR combines several techniques. The first idea is to work with independent experts. Each expert is confronted with a sample of scenarios drawn at random from the original stochastic process. The second idea … Read more