On Maximal S-free Convex Sets
Let S be a subset of integer points that satisfy the property that $conv(S) \cap Z^n = S$. Then a convex set K is called an S-free convex set if $int(K) \cap S = \emptyset$. A maximal S-free convex set is an S-free convex set that is not properly contained in any S-free convex set. … Read more