Optimizing with Column Generation: Advanced Branch-Cut-and-Price Algorithms (Part I)

We are excited to present the early release of Part I of our book “Optimizing with Column Generation: advanced Branch-Cut-and-Price Algorithms”. While the book’s ultimate goal, as suggested by its subtitle, is to describe cutting-edge techniques in these algorithms, this objective is primarily addressed in the forthcoming Part II. However, we feel that the completed … Read more

Machine Learning for Optimization-Based Separation: the Case of Mixed-Integer Rounding Cuts

Mixed-Integer Rounding (MIR) cuts are effective at improving the dual bound in Mixed-Integer Linear Programming (MIP). However, in practice, MIR cuts are separated heuristically rather than using optimization as the latter is prohibitively expensive. We present a hybrid cut generation framework in which we train a Machine Learning (ML) model to inform cut generation for … Read more

Incorporating Service Reliability in Multi-depot Vehicle Scheduling: A Chance-Constrained Approach

The multi-depot vehicle scheduling problem (MDVSP) is a critical planning challenge for transit agencies. We introduce a novel approach to MDVSP by incorporating service reliability through chance-constrained programming (CCP), targeting the pivotal issue of travel time uncertainty and its impact on transit service quality. Our model guarantees service reliability measured by on-time performance (OTP), a … Read more

New cuts and a branch-cut-and-price model for the Multi Vehicle Covering Tour Problem

\(\) The Multi-Vehicle Covering Tour Problem (m-CTP) involves a graph in which the set of vertices is partitioned into a depot and three distinct subsets representing customers, mandatory facilities, and optional facilities. Each customer is linked to a specific subset of optional facilities that define its coverage set. The goal is to determine a set … Read more

Using Disjunctive Cuts in a Branch-and-Cut Method to Solve Convex Integer Nonlinear Bilevel Problems

We present a branch-and-cut method for solving convex integer nonlinear bilevel problems, i.e., bilevel models with nonlinear but convex objective functions and constraints in both the upper and the lower level. To this end, we generalize the idea of using disjunctive cuts to cut off integer-feasible but bilevel-infeasible points. These cuts can be obtained by … Read more

Binary Integer Program Reformulation: A Set System Approximation Approach

This paper presents a generic reformulation framework for binary integer programs (BIPs) that does not impose additional specifications on the objective function or constraints. To enable this generality, we introduce a set system approximation theory designed to identify the tightest inner and outer approximations for any binary solution space using special types of set systems. … Read more

On Rank-Monotone Graph Operations and Minimal Obstruction Graphs for the Lovász-Schrijver SDP Hierarchy

We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász-Schrijver SDP operator LS_+, with a particular focus on finding and characterizing the smallest graphs with a given LS_+-rank (the least number of iterations of the LS_+ operator on the fractional stable set polytope to compute the stable set … Read more

A hybrid branch-and-bound and interior-point algorithm for stochastic mixed-integer nonlinear second-order cone programming

One of the chief attractions of stochastic mixed-integer second-order cone programming is its diverse applications, especially in engineering (Alzalg and Alioui, {\em IEEE Access}, 10:3522-3547, 2022). The linear and nonlinear versions of this class of optimization problems are still unsolved yet. In this paper, we develop a hybrid optimization algorithm coupling branch-and-bound and primal-dual interior-point … Read more

Cutting planes from the simplex tableau for quadratically constrained optimization problems

We describe a method to generate cutting planes for quadratically constrained optimization problems. The method uses information from the simplex tableau of a linear relaxation of the problem in combination with McCormick estimators. The method is guaranteed to cut off a basic feasible solution of the linear relaxation that violates the quadratic constraints in the … Read more

Mixed-Integer Programming Approaches to Generalized Submodular Optimization and its Applications

Submodularity is an important concept in integer and combinatorial optimization. A classical submodular set function models the utility of selecting homogenous items from a single ground set, and such selections can be represented by binary variables. In practice, many problem contexts involve choosing heterogenous items from more than one ground set or selecting multiple copies … Read more