Non-Convex Self-Concordant Functions: Practical Algorithms and Complexity Analysis

We extend the standard notion of self-concordance to non-convex optimization and develop a family of second-order algorithms with global convergence guarantees. In particular, two function classes – weakly self-concordant functions and F-based self-concordant functions – generalize the self-concordant framework beyond convexity, without assuming the Lipschitz continuity of the gradient or Hessian. For these function classes, … Read more