On Quasi-Newton Forward–Backward Splitting: Proximal Calculus and Convergence

We introduce a framework for quasi-Newton forward–backward splitting algorithms (proximal quasi-Newton methods) with a metric induced by diagonal +/- rank-r symmetric positive definite matrices. This special type of metric allows for a highly efficient evaluation of the proximal mapping. The key to this efficiency is a general proximal calculus in the new metric. By using … Read more