Improved second-order evaluation complexity for unconstrained nonlinear optimization using high-order regularized models
The unconstrained minimization of a sufficiently smooth objective function $f(x)$ is considered, for which derivatives up to order $p$, $p\geq 2$, are assumed to be available. An adaptive regularization algorithm is proposed that uses Taylor models of the objective of order $p$ and that is guaranteed to find a first- and second-order critical point in … Read more