An algorithmic framework for MINLP with separable non-convexity

Global optimization algorithms, e.g., spatial branch-and-bound approaches like those implemented in codes such as BARON and COUENNE, have had substantial success in tackling complicated, but generally small scale, non-convex MINLPs (i.e., mixed-integer nonlinear programs having non-convex continuous relaxations). Because they are aimed at a rather general class of problems, the possibility remains that larger instances … Read more

On convex relaxations of quadrilinear terms

The best known method to find exact or at least epsilon-approximate solutions to polynomial programming problems is the spatial Branch-and-Bound algorithm, which rests on computing lower bounds to the value of the objective function to be minimized on each region that it explores. These lower bounds are often computed by solving convex relaxations of the … Read more

Branching and bounds tightening techniques for non-convex MINLP

Many industrial problems can be naturally formulated using Mixed Integer Nonlinear Programming (MINLP). Motivated by the demand for Open-Source solvers for real-world MINLP problems, we have developed a spatial Branch-and-Bound software package named COUENNE (Convex Over- and Under-ENvelopes for Nonlinear Estimation). In this paper, we present the structure of couenne and discuss in detail our … Read more