Proving strong duality for geometric optimization using a conic formulation

Geometric optimization is an important class of problems that has many applications, especially in engineering design. In this article, we provide new simplified proofs for the well-known associated duality theory, using conic optimization. After introducing suitable convex cones and studying their properties, we model geometric optimization problems with a conic formulation, which allows us to apply the powerful duality theory of conic optimization and derive the duality results known for geometric optimization.

Citation

IMAGE9903, Service MATHRO, Facult▒ Polytechnique de Mons, Mons, Belgium, Oct/99

Article

Download

Loading...