Traditional stochastic programming is risk neutral in the sense that it is concerned with the optimization of an expectation criteria. A common approach to addressing risk in decision making problems is to consider a weighted mean-risk criterion, where some dispersion statistic is used as a measure of risk. We investigate the computational suitability of various mean-risk objective functions in addressing risk in stochastic programming models. We prove that the classical mean-variance criteria leads to computational intractability even in the simplest stochastic programs. On the other hand, a number of alternative mean-risk functions are shown to be computationally tractable using slight variants of existing stochastic programming decomposition algorithms. We propose a parametric cutting plane algorithm to generate the entire mean-risk efficient frontier for a particular mean-risk objective.

## Citation

Technical Report. School of Industrial & Systems Engineering, Georgia Institute of Technology.