A traffic matrix $D^1$ dominates a traffic matrix $D^2$ if $D^2$ can be routed on every (capacitated) network where $D^1$ can be routed. We prove that $D^1$ dominates $D^2$ if and only if $D^1$, considered as a capacity vector, supports $D^2$. We show several generalizations of this result.

## Citation

Centro Vito Volterra, Universita' di Roma Tor Vergata, Technical Report, 2004