We consider a chance constrained problem, where one seeks to minimize a convex objective over solutions satisfying, with a given (close to one) probability, a system of randomly perturbed convex constraints. Our goal is to build a computationally tractable approximation of this (typically intractable) problem, i.e., an explicitly given convex optimization program with the feasible set contained in the one of the chance constrained problem. We construct a general class of such convex conservative approximations of the corresponding chance constrained problem. Moreover, under the assumptions that the constraints are affine in the perturbations and the entries in the perturbation vector are independent of each other random variables, we build a large deviations type approximation, referred to as `Bernstein approximation', of the chance constrained problem. This approximation is convex, and thus efficiently solvable. We propose a simulation-based scheme for bounding the optimal value in the chance constrained problem and report numerical experiments aimed at comparing the Bernstein and well-known scenario approximation approaches. Finally, we extend our construction to the case of ambiguously chance constrained problems, where the random perturbations are independent with the collection of distributions known to belong to a given convex compact set rather than to be known exactly, while the chance constraint should be satisfied for every distribution given by this set.

## Citation

Working paper, December 2004, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA