Numerical Methods for Convex Multistage Stochastic Optimization

Optimization problems involving sequential decisions in  a  stochastic environment    were studied  in  Stochastic Programming (SP), Stochastic Optimal Control  (SOC) and Markov Decision Processes (MDP). In this paper we mainly concentrate on SP and  SOC modelling   approaches. In these frameworks there are natural situations  when the considered problems are  convex. Classical approach to sequential optimization … Read more

Conditional Distributionally Robust Functionals

Risk measures incorporate a conservative or risk averse perspective in decisionmaking under uncertainty. Taking a variety of models for the potential outcomes into account, the distributionally robust decision is the most conservative decision among the decisions available. This paper investigates different versions of conditional risk measures and distributionally robust functionals in a multistage setting. The … Read more

Distributionally Robust Modeling of Optimal Control

The aim of this paper is to formulate several questions related to distributionally robust Stochastic Optimal Control modeling. As an example, the distributionally robust counterpart of the classical inventory model is discussed in details. Finite and infinite horizon stationary settings are considered. ArticleDownload View PDF

Risk-Averse Stochastic Optimal Control: an efficiently computable statistical upper bound

In this paper, we discuss an application of the SDDP type algorithm to nested risk-averse formulations of Stochastic Optimal Control (SOC) problems. We propose a construction of a statistical upper bound for the optimal value of risk-averse SOC problems. This outlines an approach to a solution of a long standing problem in that area of … Read more

Bayesian Distributionally Robust Optimization

We introduce a new framework, Bayesian Distributionally Robust Optimization (Bayesian-DRO), for data-driven stochastic optimization where the underlying distribution is unknown. Bayesian-DRO contrasts with most of the existing DRO approaches in the use of Bayesian estimation of the unknown distribution. To make computation of Bayesian updating tractable, Bayesian-DRO first assumes the underlying distribution takes a parametric … Read more

Central Limit Theorem and Sample Complexity of Stationary Stochastic Programs

In this paper we discuss sample complexity of solving stationary stochastic programs by the Sample Average Approximation (SAA) method. We investigate this in the framework of Optimal Control (in discrete time) setting. In particular we derive a Central Limit Theorem type asymptotics for the optimal values of the SAA problems. The main conclusion is that … Read more

Distributionally Robust Optimal Control and MDP Modeling

In this paper, we discuss Optimal Control and Markov Decision Process (MDP) formulations of multistage optimization problems when the involved probability distributions are not known exactly, but rather are assumed to belong to specified ambiguity families. The aim of this paper is to clarify a connection between such distributionally robust approaches to multistage stochastic optimization. … Read more

Dual bounds for periodical stochastic programs

In this paper we discuss construction of the dual of a periodical formulation of infinite horizon linear stochastic programs with a discount factor. The dual problem is used for computing a deterministic upper bound for the optimal value of the considered multistage stochastic program. Numerical experiments demonstrate behavior of that upper bound especially when the … Read more

Duality and sensitivity analysis of multistage linear stochastic programs

In this paper we investigate the dual of a Multistage Stochastic Linear Program (MSLP) to study two related questions for this class of problems. The first of these questions is the study of the optimal value of the problem as a function of the involved parameters. For this sensitivity analysis problem, we provide formulas for … Read more

Periodical Multistage Stochastic Programs

In some applications the considered multistage stochastic programs have a periodical behavior. We show that in such cases it is possible to drastically reduce the number of stages by introducing a periodical analog of the so-called Bellman equations for discounted infinite horizon problems, used in Markov Decision Processes and Stochastic Optimal Control. Furthermore, we describe … Read more