Portfolio Selection with Robust Estimation

Mean-variance portfolios constructed using the sample mean and covariance matrix of asset returns perform poorly out-of-sample due to estimation error. Moreover, it is commonly accepted that estimation error in the sample mean is much larger than in the sample covariance matrix. For this reason, practitioners and researchers have recently focused on the minimum-variance portfolio, which relies solely on estimates of the covariance matrix, and thus, usually performs better out-of-sample. But even the minimum-variance portfolios are quite sensitive to estimation error and have unstable weights that fluctuate substantially over time. In this paper, we propose a class of portfolios that have better stability properties than the traditional minimum-variance portfolios. The proposed portfolios are constructed using certain robust estimators and can be computed by solving a single nonlinear program, where robust stimation and portfolio optimization are performed in a single step. We show analytically that the resulting portfolio weights are less sensitive to changes in the asset-return distribution than those of the traditional minimum-variance portfolios. Moreover, our numerical results on simulated and empirical data confirm that the proposed portfolios are more stable than the traditional minimum-variance portfolios, while preserving (or slightly improving) their relatively good out-of-sample performance.


LBS working paper, 2006.



View Portfolio Selection with Robust Estimation