Nonlinear Matroid Optimization and Experimental Design

We study the problem of optimizing nonlinear objective functions over matroids presented by oracles or explicitly. Such functions can be interpreted as the balancing of multi-criteria optimization. We provide a combinatorial polynomial time algorithm for arbitrary oracle-presented matroids, that makes repeated use of matroid intersection, and an algebraic algorithm for vectorial matroids. Our work is partly motivated by applications to minimum-aberration model-fitting in experimental design in statistics, which we discuss and demonstrate in detail.

Citation

IBM Research Report RC24303 (July, 2007)

Article

Download

View Nonlinear Matroid Optimization and Experimental Design