We review the common fixed point problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We present our recent definition of sparseness of a family of operators and discuss a string-averaging algorithmic scheme that favorably handles the common fixed points problem when the family of operators is sparse. We also review some recent results on the multiple operators split common fixed point problem which requires to find a common fixed point of a family of operators in one space whose image under a linear transformation is a common fixed point of another family of operators in the image space.

## Citation

Contemporary Mathematics, accepted for publication.

## Article

View On String-Averaging for Sparse Problems and On the Split Common Fixed Point Problem