Given linear matrix inequalities (LMIs) L_1 and L_2, it is natural to ask: (Q1) when does one dominate the other, that is, does L_1(X) PsD imply L_2(X) PsD? (Q2) when do they have the same solution set? Such questions can be NP-hard. This paper describes a natural relaxation of an LMI, based on substituting matrices for the variables x_j. With this relaxation, the domination questions (Q1) and (Q2) have elegant answers, indeed reduce to constructible semidefinite programs. Assume there is an X such that L_1(X) and L_2(X) are both PD, and suppose the positivity domain of L_1 is bounded. For our "matrix variable" relaxation a positive answer to (Q1) is equivalent to the existence of matrices V_j such that L_2(x)=V_1^* L_1(x) V_1 + ... + V_k^* L_1(x) V_k. As for (Q2) we show that, up to redundancy, L_1 and L_2 are unitarily equivalent. Such algebraic certificates are typically called Positivstellensätze and the above are examples of such for linear polynomials. The paper goes on to derive a cleaner and more powerful Putinar-type Positivstellensatz for polynomials positive on a bounded set of the form {X | L(X) PsD}. An observation at the core of the paper is that the relaxed LMI domination problem is equivalent to a classical problem. Namely, the problem of determining if a linear map from a subspace of matrices to a matrix algebra is "completely positive". Complete positivity (CP) is one of the main techniques of modern operator theory. Thus on one hand it provides tools for studying LMIs and in the other direction, since CP is well developed, it gives perspective on the difficulties in solving LMI domination problems.

## Citation

Mathematical Programming, to appear