Random half-integral polytopes

We show that half-integral polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as Ω(logn/loglogn) with positive probability — even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank is due to certain obstructions. We determine the exact threshold number, when these obstructions cease to exist.

Article

Download

View PDF