On proximal subgradient splitting method for minimizing the sum of two nonsmooth convex functions

In this paper we present a variant of the proximal forward-backward splitting method for solving nonsmooth optimization problems in Hilbert spaces, when the objective function is the sum of two nondifferentiable convex functions. The proposed iteration, which will be call the Proximal Subgradient Splitting Method, extends the classical projected subgradient iteration for important classes of problems, exploiting the additive structure of the objective function. The weak convergence of the generated sequence was established using different stepsizes and under suitable assumptions. Moreover, we analyze the complexity of the iterates.

Article

Download

View PDF