Probabilistic optimization via approximate p-efficient points and bundle methods

For problems when decisions are taken prior to observing the realization of underlying random events, probabilistic constraints are an important modelling tool if reliability is a concern. A key concept to numerically dealing with probabilistic constraints is that of p-efficient points. By adopting a dual point of view, we develop a solution framework that includes and extends various existing formulations. The unifying approach is built on the basis of a recent generation of bundle methods called with on-demand accuracy, characterized by its versatility and flexibility. Numerical results for several difficult probabilistically constrained problems confirm the interest of the approach.

Citation

Preprint

Article

Download

View Probabilistic optimization via approximate p-efficient points and bundle methods