Using the Johnson-Lindenstrauss lemma in linear and integer programming

The Johnson-Lindenstrauss lemma allows dimension reduction on real vectors with low distortion on their pairwise Euclidean distances. This result is often used in algorithms such as $k$-means or $k$ nearest neighbours since they only use Euclidean distances, and has sometimes been used in optimization algorithms involving the minimization of Euclidean distances. In this paper we introduce a first attempt at using this lemma in the context of feasibility problems in linear and integer programming, which cannot be expressed only in function of Euclidean distances.

Citation

Working paper, Ecole Polytechnique, June 2015

Article

Download

View Using the Johnson-Lindenstrauss lemma in linear and integer programming