Random projections for linear programming

Random projections are random linear maps, sampled from appropriate distributions, that approximately preserve certain geometrical invariants so that the approximation improves as the dimension of the space grows. The well-known Johnson-Lindenstrauss lemma states that there are \LL{random matrices with surprisingly few rows} that approximately preserve pairwise Euclidean distances among a set of points. This is … Read more

Using the Johnson-Lindenstrauss lemma in linear and integer programming

The Johnson-Lindenstrauss lemma allows dimension reduction on real vectors with low distortion on their pairwise Euclidean distances. This result is often used in algorithms such as $k$-means or $k$ nearest neighbours since they only use Euclidean distances, and has sometimes been used in optimization algorithms involving the minimization of Euclidean distances. In this paper we … Read more

Convex Optimization Methods for Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression

In this paper, we study convex optimization methods for computing the trace norm regularized least squares estimate in multivariate linear regression. The so-called factor estimation and selection (FES) method, recently proposed by Yuan et al. [17], conducts parameter estimation and factor selection simultaneously and have been shown to enjoy nice properties in both large and … Read more