The purpose of this paper is to solve the 0-1 k-item quadratic knapsack problem (kQKP), a problem of maximizing a quadratic function subject to two linear constraints.We propose an exact method based on semidenite optimization. The semidenite relaxation used in our approach includes simple rank one constraints, which can be handled efficiently by interior point methods. Furthermore, we strengthen the relaxation by polyhedral constraints and obtain approximate solutions to this semidefinite problem by applying a bundle method. We review other exact solution methods and compare all these approaches by experimenting with instances of various sizes and densities.