We consider well-known decomposition techniques for multistage stochastic programming and a new scheme based on normal solutions for stabilizing iterates during the solution process. The given algorithms combine ideas from finite perturbation of convex programs and level bundle methods to regularize the so-called forward step of these decomposition methods. Numerical experiments on a hydrothermal scheduling problem indicate that our algorithms are competitive with the state-of-the-art approaches such as multistage regularized decomposition and stochastic dual dynamic programming.
Citation
submitted paper