We consider a multi-stage stochastic linear program that lends itself to solution by stochastic dual dynamic programming (SDDP). In this context, we consider a distributionally robust variant of the model with a finite number of realizations at each stage. Distributional robustness is with respect to the probability mass function governing these realizations. We describe a computationally tractable variant of SDDP to handle this model using the Wasserstein distance to characterize distributional uncertainty.
Citation
Northwestern University, Evanston, IL. Dec 2019.
Article
View Distributionally Robust Stochastic Dual Dynamic Programming