In this paper, we study a solution approach for set optimization problems with respect to the lower set less relation. This approach can serve as a base for numerically solving set optimization problems by using established solvers from multiobjective optimization. Our strategy consists of deriving a parametric family of multiobjective optimization problems whose optimal solution sets approximate, in a specific sense, that of the set-valued problem with arbitrary accuracy. We also examine particular classes of set-valued mappings for which the corresponding set optimization problem is equivalent to a multiobjective optimization problem in the generated family. Surprisingly, this includes set-valued mappings with a convex graph.

## Article

View A Vectorization Scheme for Nonconvex Set Optimization Problems