Convexity and continuity of specific set-valued maps and their extremal value functions

In this paper, we study several classes of set-valued maps, which can be used in set-valued optimization and its applications, and their respective maximum and minimum value functions. The definitions of these maps are based on scalar-valued, vector-valued, and cone-valued maps. Moreover, we consider those extremal value functions which are obtained when optimizing linear functionals … Read more

A Vectorization Scheme for Nonconvex Set Optimization Problems

In this paper, we study a solution approach for set optimization problems with respect to the lower set less relation. This approach can serve as a base for numerically solving set optimization problems by using established solvers from multiobjective optimization. Our strategy consists of deriving a parametric family of multiobjective optimization problems whose optimal solution … Read more

Solving set-valued optimization problems using a multiobjective approach

Set-valued optimization using the set approach is a research topic of high interest due to its practical relevance and numerous interdependencies to other fields of optimization. However, it is a very difficult task to solve these optimzation problems even for specific cases. In this paper we study set-valued optimization problems and develop a multiobjective optimization … Read more

On convexity and quasiconvexity of extremal value functions in set optimization

We study different classes of convex and quasiconvex set-valued maps defined by means of the lower-less order relation and the upper-less order relation. The aim of this paper is to formulate necessary and especially sufficient conditions for the convexity/quasiconvexity of extremal value functions. CitationDOI: 10.23952/asvao.3.2021.3.04ArticleDownload View PDF

Solving Multiobjective Mixed Integer Convex Optimization Problems

Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, … Read more

An Algorithmic Approach to Multiobjective Optimization with Decision Uncertainty

In real life applications optimization problems with more than one objective function are often of interest. Next to handling multiple objective functions, another challenge is to deal with uncertainties concerning the realization of the decision variables. One approach to handle these uncertainties is to consider the objectives as set-valued functions. Hence, the image of one … Read more