An Algorithm for Stochastic Convex-Concave Fractional Programs with Applications to Production Efficiency and Equitable Resource Allocation

We propose an algorithm to solve convex and concave fractional programs and their stochastic counterparts in a common framework. Our approach is based on a novel reformulation that involves differences of square terms in the constraints, and subsequent employment of piecewise-linear approximations of the concave terms. Using the branch-and-bound (B&B) framework, our algorithm adaptively refines the piecewise-linear approximations and iteratively solves convex approximation problems. The convergence analysis provides a bound on the optimality gap as a function of approximation errors. Based on this bound, we prove that the proposed B&B algorithm terminates in a finite number of iterations and the worst-case bound to obtain an ϵ-optimal solution reciprocally depends on the square root of ϵ. Numerical experiments on Cobb-Douglas
production efficiency and equitable resource allocation problems support that the algorithm efficiently finds a highly accurate solution while significantly outperforming the benchmark algorithms for all the small size problem instances solved. A modified branching strategy that takes the advantage of non-linearity in convex functions further improves the performance. Results are also discussed when solving a dual reformulation and using a cutting surface algorithm to solve distributionally robust counterpart of the Cobb-Douglas example models.

Article

Download

View PDF