A nearly linearly convergent first-order method for nonsmooth functions with quadratic growth

Classical results show that gradient descent converges linearly to minimizers of smooth strongly convex functions. A natural question is whether there exists a locally nearly linearly convergent method for nonsmooth functions with quadratic growth. This work designs such a method for a wide class of nonsmooth and nonconvex locally Lipschitz functions, including max-of-smooth, Shapiro’s decomposable class, and generic semialgebraic functions. The algorithm is parameter-free and derives from Goldstein’s conceptual subgradient method.

Citation

ArXiv: https://arxiv.org/abs/2205.00064

Article

Download

View PDF