Some Primal-Dual Theory for Subgradient Methods for Strongly Convex Optimization

We consider (stochastic) subgradient methods for strongly convex but potentially nonsmooth non-Lipschitz optimization. We provide new equivalent dual descriptions (in the style of dual averaging) for the classic subgradient method, the proximal subgradient method, and the switching subgradient method. These equivalences enable $O(1/T)$ convergence guarantees in terms of both their classic primal gap and a … Read more

Convergence Rate of Projected Subgradient Method with Time-varying Step-sizes

We establish the optimal ergodic convergence rate for the classical projected subgradient method with time-varying step-sizes. This convergence rate remains the same even if we slightly increase the weight of the most recent points, thereby relaxing the ergodic sense. Article Download View Convergence Rate of Projected Subgradient Method with Time-varying Step-sizes

Goldstein Stationarity in Lipschitz Constrained Optimization

We prove the first convergence guarantees for a subgradient method minimizing a generic Lipschitz function over generic Lipschitz inequality constraints. No smoothness or convexity (or weak convexity) assumptions are made. Instead, we utilize a sequence of recent advances in Lipschitz unconstrained minimization, which showed convergence rates of $O(1/\delta\epsilon^3)$ towards reaching a “Goldstein” stationary point, that … Read more

Exact convergence rate of the last iterate in subgradient methods

\(\) We study the convergence of the last iterate in subgradient methods applied to the minimization of a nonsmooth convex function with bounded subgradients. We first introduce a proof technique that generalizes the standard analysis of subgradient methods. It is based on tracking the distance between the current iterate and a different reference point at … Read more

An Improved Unconstrained Approach for Bilevel Optimization

In this paper, we focus on the nonconvex-strongly-convex bilevel optimization problem (BLO). In this BLO, the objective function of the upper-level problem is nonconvex and possibly nonsmooth, and the lower-level problem is smooth and strongly convex with respect to the underlying variable $y$. We show that the feasible region of BLO is a Riemannian manifold. … Read more

A Constraint Dissolving Approach for Nonsmooth Optimization over the Stiefel Manifold

This paper focus on the minimization of a possibly nonsmooth objective function over the Stiefel manifold. The existing approaches either lack efficiency or can only tackle prox-friendly objective functions. We propose a constraint dissolving function named NCDF and show that it has the same first-order stationary points and local minimizers as the original problem in … Read more

A nearly linearly convergent first-order method for nonsmooth functions with quadratic growth

Classical results show that gradient descent converges linearly to minimizers of smooth strongly convex functions. A natural question is whether there exists a locally nearly linearly convergent method for nonsmooth functions with quadratic growth. This work designs such a method for a wide class of nonsmooth and nonconvex locally Lipschitz functions, including max-of-smooth, Shapiro’s decomposable … Read more

A superlinearly convergent subgradient method for sharp semismooth problems

Subgradient methods comprise a fundamental class of nonsmooth optimization algorithms. Classical results show that certain subgradient methods converge sublinearly for general Lipschitz convex functions and converge linearly for convex functions that grow sharply away from solutions. Recent work has moreover extended these results to certain nonconvex problems. In this work we seek to improve the … Read more

A Different Perspective on the Stochastic Convex Feasibility Problem

We analyze a simple randomized subgradient method for approximating solutions to stochastic systems of convex functional constraints, the only input to the algorithm being the size of minibatches. By introducing a new notion of what is meant for a point to approximately solve the constraints, determining bounds on the expected number of iterations reduces to … Read more

New complexity results and algorithms for min-max-min robust combinatorial optimization

In this work we investigate the min-max-min robust optimization problem applied to combinatorial problems with uncertain cost-vectors which are contained in a convex uncertainty set. The idea of the approach is to calculate a set of k feasible solutions which are worst-case optimal if in each possible scenario the best of the k solutions would … Read more