Second-order convergence properties of trust-region methods using incomplete curvature information, with an application to multigrid optimization

Convergence properties of trust-region methods for unconstrained nonconvex optimization is considered in the case where information on the objective function's local curvature is incomplete, in the sense that it may be restricted to a fixed set of ``test directions'' and may not be available at every iteration. It is shown that convergence to local ``weak'' minimizers can still be obtained under some additional but algorithmically realistic conditions. These theoretical results are then applied to recursive multigrid trust-region methods, which suggests a new class of algorithms with guaranteed second-order convergence properties.

Citation

Report 05/8 Department of Mathematics, University of Namur, Namur, Belgium

Article

Download

View Second-order convergence properties of trust-region methods using incomplete curvature information, with an application to multigrid optimization