Asymptotic Consistency for Nonconvex Risk-Averse Stochastic Optimization with Infinite Dimensional Decision Spaces

Optimal values and solutions of empirical approximations of stochastic optimization problems can be viewed as statistical estimators of their true values. From this perspective, it is important to understand the asymptotic behavior of these estimators as the sample size goes to infinity, which is both of theoretical as well as practical interest. This area of … Read more

A level-set-based topology optimization strategy using radial basis functions and a Hilbertian velocity extension

This work addresses the structural compliance minimization problem through a level-set-based strategy that rests upon radial basis functions with compact support combined with Hilbertian velocity extensions. A consistent augmented Lagrangian scheme is adopted to handle the volume constraint. The linear elasticity model and the variational problem associated with the computation of the velocity field are … Read more

An Improved Penalty Algorithm using Model Order Reduction for MIPDECO problems with partial observations

This work addresses optimal control problems governed by a linear time-dependent partial differential equation (PDE) as well as integer constraints on the control. Moreover, partial observations are assumed in the objective function. The resulting problem poses several numerical challenges due to the mixture of combinatorial aspects, induced by integer variables, and large scale linear algebra … Read more

The Strip Method for Shape Derivatives

A major challenge in shape optimization is the coupling of finite element method (FEM) codes in a way that facilitates efficient computation of shape derivatives. This is particularly difficult with multiphysics problems involving legacy codes, where the costs of implementing and maintaining shape derivative capabilities are prohibitive. The volume and boundary methods are two approaches … Read more

A Mixed-Integer PDE-Constrained Optimization Formulation for Electromagnetic Cloaking

We formulate a mixed-integer partial-differential equation constrained optimization problem for designing an electromagnetic cloak governed by the 2D Helmholtz equation with absorbing boundary conditions. Our formulation is an alternative to the topology optimization formulation of electromagnetic cloaking design. We extend the formulation to include uncertainty with respect to the angle of the incidence wave, and … Read more

Randomized Sketching Algorithms for Low Memory Dynamic Optimization

This paper develops a novel limited-memory method to solve dynamic optimization problems. The memory requirements for such problems often present a major obstacle, particularly for problems with PDE constraints such as optimal flow control, full waveform inversion, and optical tomography. In these problems, PDE constraints uniquely determine the state of a physical system for a … Read more

Spectral Gap Optimization of Divergence Type Diffusion Operators

In this paper, we address the problem of maximizing the spectral gap of a divergence type diffusion operator. Our main application of interest is characterizing the distribution of a swarm of agents that evolve on a bounded domain in Rn according to a Markov process. A subclass of the divergence type operators that we introduce … Read more

Improved Penalty Algorithm for Mixed Integer PDE Constrained Optimization (MIPDECO) Problems

Optimal control problems including partial differential equation (PDE) as well as integer constraints merge the combinatorial difficulties of integer programming and the challenges related to large-scale systems resulting from discretized PDEs. So far, the Branch-and-Bound framework has been the most common solution strategy for such problems. In order to provide an alternative solution approach, especially … Read more

Maximizing the storage capacity of gas networks: a global MINLP approach

In this paper, we study the transient optimization of gas networks, focusing in particular on maximizing the storage capacity of the network. We include nonlinear gas physics and active elements such as valves and compressors, which due to their switching lead to discrete decisions. The former is described by a model derived from the Euler … Read more

Provably High-Quality Solutions for the Meal Delivery Routing Problem

Online restaurant aggregators with integrated meal delivery networks have become more common and more popular in the past few years. Meal delivery is arguably the ultimate challenge in last mile logistics: a typical order is expected to be delivered within an hour (much less if possible), and within minutes of the food becoming ready. We … Read more