The Value of Multi-stage Stochastic Programming in Risk-averse Unit Commitment under Uncertainty

Day-ahead scheduling of electricity generation or unit commitment is an important and challenging optimization problem in power systems. Variability in net load arising from the increasing penetration of renewable technologies have motivated study of various classes of stochastic unit commitment models. In two-stage models, the generation schedule for the entire day is fixed while the … Read more

Multi-objective risk-averse two-stage stochastic programming problems

We consider a multi-objective risk-averse two-stage stochastic programming problem with a multivariate convex risk measure. We suggest a convex vector optimization formulation with set-valued constraints and propose an extended version of Benson’s algorithm to solve this problem. Using Lagrangian duality, we develop scenario-wise decomposition methods to solve the two scalarization problems appearing in Benson’s algorithm. … Read more

Bounds on Risk-averse Mixed-integer Multi-stage Stochastic Programming Problems with Mean-CVaR

Risk-averse mixed-integer multi-stage stochastic programming forms a class of extremely challenging problems since the problem size grows exponentially with the number of stages, the problem is non-convex due to integrality restrictions and the objective function is a dynamic measure of risk. For this reason, we propose a scenario tree decomposition approach, namely group subproblem approach, … Read more