An Asynchronous Proximal Bundle Method

We develop a fully asynchronous proximal bundle method for solving non-smooth, convex optimization problems. The algorithm can be used as a drop-in replacement for classic bundle methods, i.e., the function must be given by a first-order oracle for computing function values and subgradients. The algorithm allows for an arbitrary number of master problem processes computing … Read more

Revisiting Augmented Lagrangian Duals

For nonconvex optimization problems, possibly having mixed-integer variables, a convergent primal-dual solution algorithm is proposed. The approach applies a proximal bundle method to certain augmented Lagrangian dual that arises in the context of the so-called generalized augmented Lagrangians. We recast these Lagrangians into the framework of a classical Lagrangian, by means of a special reformulation … Read more

A simple Newton method for local nonsmooth optimization

Superlinear convergence has been an elusive goal for black-box nonsmooth optimization. Even in the convex case, the subgradient method is very slow, and while some cutting plane algorithms, including traditional bundle methods, are popular in practice, local convergence is still sluggish. Faster variants depend either on problem structure or on analyses that elide sequences of … Read more

Multi-objective risk-averse two-stage stochastic programming problems

We consider a multi-objective risk-averse two-stage stochastic programming problem with a multivariate convex risk measure. We suggest a convex vector optimization formulation with set-valued constraints and propose an extended version of Benson’s algorithm to solve this problem. Using Lagrangian duality, we develop scenario-wise decomposition methods to solve the two scalarization problems appearing in Benson’s algorithm. … Read more

Resource Allocation for Contingency Planning: An Inexact Bundle Method for Stochastic Optimization

Resource allocation models in contingency planning aim to mitigate unexpected failures in supply chains due to disruptions with rare occurrence but disastrous consequences. This paper formulates this problems as a two-stage stochastic optimization with a risk-averse recourse function, and proposes a novel computationally tractable solution approach. The method relies on an inexact bundle method and … Read more

Decomposition algorithm for large-scale two-stage unit-commitment

Everyday, electricity generation companies submit a generation schedule to the grid operator for the coming day; computing an optimal schedule is called the unit-commitment problem. Generation companies can also occasionally submit changes to the schedule, that can be seen as intra-daily incomplete recourse actions. In this paper, we propose a two-stage formulation of unit-commitment, wherein … Read more

On Lipschitz optimization based on gray-box piecewise linearization

We address the problem of minimizing objectives from the class of piecewise differentiable functions whose nonsmoothness can be encapsulated in the absolute value function. They possess local piecewise linear approximations with a discrepancy that can be bounded by a quadratic proximal term. This overestimating local model is continuous but generally nonconvex. It can be generated … Read more

Applying oracles of on-demand accuracy in two-stage stochastic programming – a computational study

Traditionally, two variants of the L-shaped method based on Benders’ decomposition principle are used to solve two-stage stochastic programming problems: the single-cut and the multi-cut version. The concept of an oracle with on-demand accuracy was originally proposed in the context of bundle methods for unconstrained convex optimzation to provide approximate function data and subgradients. In … Read more

Bundle methods in the XXIst century: A bird’s-eye view

Bundle methods are often the algorithms of choice for nonsmooth convex optimization, especially if accuracy in the solution and reliability are a concern. We review several algorithms based on the bundle methodology that have been developed recently and that, unlike their forerunner variants, have the ability to provide exact solutions even if most of the … Read more

A Parallel Bundle Framework for Asynchronous Subspace Optimisation of Nonsmooth Convex Functions

An algorithmic framework is presented for optimising general convex functions by non synchronised parallel processes. Each process greedily picks a suitable adaptive subset of coordinates and runs a bundle method on a corresponding restricted problem stopping whenever a descent step is encountered or predicted decrease is reduced sufficiently. No prior knowledge on the dependencies between … Read more