A Simpler Approach to Matrix Completion

This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candes and Recht, Candes and Tao, and Keshavan, Montanari, and Oh. The reconstruction is accomplished by minimizing the nuclear norm, or sum of the singular … Read more

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, … Read more