Data-Driven Risk-Averse Stochastic Program And Renewable Energy Integration

With increasing penetration of renewable energy into the power grid and its intermittent nature, it is crucial and challenging for system operators to provide reliable and cost effective daily electricity generation scheduling. In this dissertation, we present our recently developed innovative modeling and solution approaches to address this challenging problem. We start with developing several … Read more

Data-Driven Risk-Averse Two-Stage Stochastic Program with ζ-Structure Probability Metrics

The traditional two-stage stochastic programming approach assumes the distribution of the random parameter in a problem is known. In most practices, however, the distribution is actually unknown. Instead, only a series of historic data are available. In this paper, we develop a data-driven stochastic optimization approach to providing a risk-averse decision making under uncertainty. In … Read more

Data-Driven Risk-Averse Stochastic Optimization with Wasserstein Metric

The traditional two-stage stochastic program approach is to minimize the total expected cost with the consideration of parameter uncertainty, and the distribution of the random parameters is assumed to be known. However, in most practices, the actual distribution of the random parameters is not known, and only a certain amount of historical data are available. … Read more