ROBIST: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

In this paper, we propose ROBIST, a simple, yet effective, data-driven algorithm for optimization under parametric uncertainty. The algorithm first generates solutions in an iterative manner by sampling and optimizing over a relatively small set of scenarios. Then, using statistical testing, the robustness of the solutions is evaluated, which can be done with a much … Read more

Using Neural Networks to Guide Data-Driven Operational Decisions

We propose to use Deep Neural Networks to solve data-driven stochastic optimization problems. Given the historical data of the observed covariate, taken decision, and the realized cost in past periods, we train a neural network to predict the objective value as a function of the decision and the covariate. Once trained, for a given covariate, … Read more

Convergence Analysis and a DC Approximation Method for Data-driven Mathematical Programs with Distributionally Robust Chance Constraints

In this paper, we consider the convergence analysis of data-driven mathematical programs with distributionally robust chance constraints (MPDRCC) under weaker conditions without continuity assumption of distributionally robust probability functions. Moreover, combining with the data-driven approximation, we propose a DC approximation method to MPDRCC without some special tractable structures. We also give the convergence analysis of … Read more

Data-Driven Risk-Averse Stochastic Program And Renewable Energy Integration

With increasing penetration of renewable energy into the power grid and its intermittent nature, it is crucial and challenging for system operators to provide reliable and cost effective daily electricity generation scheduling. In this dissertation, we present our recently developed innovative modeling and solution approaches to address this challenging problem. We start with developing several … Read more

Robustness to Dependency in Portfolio Optimization Using Overlapping Marginals

In this paper, we develop a distributionally robust portfolio optimization model where the robustness is to different dependency structures among the random losses. For a Frechet class of distributions with overlapping marginals, we show that the distributionally robust portfolio optimization problem is efficiently solvable with linear programming. To guarantee the existence of a joint multivariate … Read more