Tractable Reformulations of Distributionally Robust Two-stage Stochastic Programs with $\infty- Distance

In the optimization under uncertainty, decision-makers first select a wait-and-see policy before any realization of uncertainty and then place a here-and-now decision after the uncertainty has been observed. Two-stage stochastic programming is a popular modeling paradigm for the optimization under uncertainty that the decision-makers first specifies a probability distribution, and then seek the best decisions … Read more

Multi-Product Newsvendor Problem with Customer-driven Demand Substitution: A Stochastic Integer Program Perspective

This paper studies a multi-product newsvendor problem with customer-driven demand substitution, where each product, once run out of stock, can be proportionally substituted by the others. This problem has been widely studied in the literature, however, due to nonconvexity and intractability, only limited analytical properties have been reported and no efficient approaches have been proposed. … Read more

Data-Driven Risk-Averse Stochastic Program And Renewable Energy Integration

With increasing penetration of renewable energy into the power grid and its intermittent nature, it is crucial and challenging for system operators to provide reliable and cost effective daily electricity generation scheduling. In this dissertation, we present our recently developed innovative modeling and solution approaches to address this challenging problem. We start with developing several … Read more

Data-Driven Risk-Averse Two-Stage Stochastic Program with ζ-Structure Probability Metrics

The traditional two-stage stochastic programming approach assumes the distribution of the random parameter in a problem is known. In most practices, however, the distribution is actually unknown. Instead, only a series of historic data are available. In this paper, we develop a data-driven stochastic optimization approach to providing a risk-averse decision making under uncertainty. In … Read more

Chance Constrained Mixed Integer Program: Bilinear and Linear Formulations, and Benders Decomposition

In this paper, we study chance constrained mixed integer program with consideration of recourse decisions and their incurred cost, developed on a finite discrete scenario set. Through studying a non-traditional bilinear mixed integer formulation, we derive its linear counterparts and show that they could be stronger than existing linear formulations. We also develop a variant … Read more