Riemannian optimization with finite-difference gradient approximations

Derivative-free Riemannian optimization (DFRO) aims to minimize an objective function using only function evaluations, under the constraint that the decision variables lie on a Riemannian manifold. The rapid increase in problem dimensions over the years calls for computationally cheap DFRO algorithms, that is, algorithms requiring as few function evaluations and retractions as possible. We propose … Read more

Global optimization using random embeddings

We propose a random-subspace algorithmic framework for global optimization of Lipschitz-continuous objectives, and analyse its convergence using novel tools from conic integral geometry. X-REGO randomly projects, in a sequential or simultaneous manner, the high- dimensional original problem into low-dimensional subproblems that can then be solved with any global, or even local, optimization solver. We estimate … Read more

Constrained global optimization of functions with low effective dimensionality using multiple random embeddings

We consider the bound-constrained global optimization of functions with low effective dimensionality, that are constant along an (unknown) linear subspace and only vary over the effective (complement) subspace. We aim to implicitly explore the intrinsic low dimensionality of the constrained landscape using feasible random embeddings, in order to understand and improve the scalability of algorithms … Read more