Decremental State-Space Relaxations for the Basic Traveling Salesman Problem with a Drone

Truck-and-drone routing problems have become an important topic of research in the last decade due to their applications for last-mile deliveries. Despite the large number of publications in this area, the most efficient exact algorithms designed thus far struggle to solve the benchmark instances with 39 or more customers. This fact is true even for … Read more

A Branch-Cut-and-Price Algorithm for the Time-Dependent Electric Vehicle Routing Problem with Time Windows

The adoption of electric vehicles (EVs) within last-mile deliveries is considered one of the key transformations towards more sustainable logistics. The inclusion of EVs introduces new operational constraints to the models such as a restricted driving range and the possibility to perform recharges in-route. The discharge of the typical batteries is complex and depends on … Read more

Dynamic programming for the time-dependent traveling salesman problem with time windows

The recent growth of direct-to-consumer deliveries has stressed the importance of last-mile logistics, becoming one of the critical factors in city planning. One of the key factors lies in the last-mile deliveries, reaching in some cases nearly 50% of the overall parcel delivery cost. Different variants of the the well-known Traveling Salesman Problem (TSP) arise … Read more

An Enhanced Branch and Price Algorithm for the Time-Dependent Vehicle Routing Problem with Time Windows

In this paper we implement a branch and price (BP) algorithm for a time dependent vehicle routing problem with time windows (TDVRPTW) in which the goal is to minimize the total route duration (DM-TDVRPTW). The travel time between two customers depends on the departure time and, thus, it need not remain fixed along the planning … Read more