Robust Workforce Management with Crowdsourced Delivery

We investigate how crowdsourced delivery platforms with both contracted and ad-hoc couriers can effectively manage their workforce to meet delivery demands amidst uncertainties. Our objective is to minimize the hiring costs of contracted couriers and the crowdsourcing costs of ad-hoc couriers while considering the uncertain availability and behavior of the latter. Due to the complication … Read more

A Column Generation Approach for the Lexicographic Optimization of Intra-Hospital Transports

Over the last fewyears, the efficient design of processes in hospitals and medical facilities has received more and more attention, particularly when the improvement of the processes is aimed at relieving theworkload of medical staff. To this end,we have developed a method to determine optimal allocations of intra-hospital transports to hospital transport employees. When optimizing … Read more

Toward Efficient Transportation Electrification of Heavy-Duty Trucks: Joint Scheduling of Truck Routing and Charging

The timely transportation of goods to customers is an essential component of economic activities. However, heavy-duty diesel trucks that deliver goods contribute significantly to greenhouse gas emissions within many large metropolitan areas, including Los Angeles, New York, and San Francisco. To facilitate freight electrification, this paper proposes joint routing and charging (JRC) scheduling for electric … Read more

Solving Unsplittable Network Flow Problems with Decision Diagrams

In unsplittable network flow problems, certain nodes must satisfy a combinatorial requirement that the incoming arc flows cannot be split or merged when routed through outgoing arcs. This so-called “no-split no-merge” requirement arises in unit train scheduling where train consists should remain intact at stations that lack necessary equipment and manpower to attach/detach them. Solving … Read more

Decremental State-Space Relaxations for the Basic Traveling Salesman Problem with a Drone

Truck-and-drone routing problems have become an important topic of research in the last decade due to their applications for last-mile deliveries. Despite the large number of publications in this area, the most efficient exact algorithms designed thus far struggle to solve the benchmark instances with 39 or more customers. This fact is true even for … Read more

Insertion Heuristics for a Class of Dynamic Vehicle Routing Problems

We consider a simple family of dynamic vehicle routing problems, in which we have a fixed fleet of identical vehicles, and customer requests arrive during the route-planning process. For this kind of problem, it is natural to use an insertion heuristic. We test several such heuristics computationally, on two different variants of the problem. It … Read more

Vehicle Routing with Heterogeneous Time Windows

We consider a novel variant of the heterogeneous vehicle routing problem (VRP) in which each customer has different availability time windows for every vehicle. In particular, this covers our motivating application of planning daily delivery tours for a single vehicle, where customers can be available at different times each day. The existing literature on heterogeneous … Read more

An integrated assignment, routing, and speed model for roadway mobility and transportation with environmental, efficiency, and service goals

Managing all the mobility and transportation services with autonomous vehicles for users of a smart city requires determining the assignment of the vehicles to the users and their routing in conjunction with their speed. Such decisions must ensure low emission, efficiency, and high service quality by also considering the impact on traffic congestion caused by … Read more

Dual Bounds from Decision Diagram-Based Route Relaxations: An Application to Truck-Drone Routing

For vehicle routing problems, strong dual bounds on the optimal value are needed to develop scalable exact algorithms, as well as to evaluate the performance of heuristics. In this work, we propose an iterative algorithm to compute dual bounds motivated by connections between decision diagrams (DDs) and dynamic programming (DP) models used for pricing in … Read more

A Machine Learning Approach to Solving Large Bilevel and Stochastic Programs: Application to Cycling Network Design

We present a novel machine learning-based approach to solving bilevel programs that involve a large number of independent followers, which as a special case include two-stage stochastic programming. We propose an optimization model that explicitly considers a sampled subset of followers and exploits a machine learning model to estimate the objective values of unsampled followers. … Read more