An algorithmic characterization of P-matricity II: adjustments, refinements, and validation

The paper “An algorithmic characterization of P-matricity” (SIAM Journal on Matrix Analysis and Applications, 34:3 (2013) 904–916, by the same authors as here) implicitly assumes that the iterates generated by the Newton-min algorithm for solving a linear complementarity problem of dimension n, which reads 0 ⩽ x ⊥ (M x + q) ⩾ 0, are … Read more

An algorithmic characterization of P-matricity

It is shown that a matrix $M$ is a P-matrix if and only if, whatever is the vector $q$, the Newton-min algorithm does not cycle between two points when it is used to solve the linear complementarity problem $0\leq x\perp (Mx+q)\geq0$. CitationInria research report RR-8004ArticleDownload View PDF

Nonconvergence of the plain Newton-min algorithm for linear complementarity problems with a hBcmatrix

The plain Newton-min algorithm to solve the linear complementarity problem (LCP for short) $0\leq x\perp(Mx+q)\geq0$ can be viewed as a nonsmooth Newton algorithm without globalization technique to solve the system of piecewise linear equations $\min(x,Mx+q)=0$, which is equivalent to the LCP. When $M$ is an $M$-matrix of order~$n$, the algorithm is known to converge in … Read more