Stochastic Decomposition for Two-stage Stochastic Linear Programs with Random Cost Coefficients

Stochastic decomposition (SD) has been a computationally effective approach to solve large-scale stochastic programming (SP) problems arising in practical applications. By using incremental sampling, this approach is designed to discover an appropriate sample size for a given SP instance, thus precluding the need for either scenario reduction or arbitrary sample sizes to create sample average … Read more

Mitigating Uncertainty via Compromise Decisions in Two-stage Stochastic Linear Programming

Stochastic Programming (SP) has long been considered as a well-justified yet computationally challenging paradigm for practical applications. Computational studies in the literature often involve approximating a large number of scenarios by using a small number of scenarios to be processed via deterministic solvers, or running Sample Average Approximation on some genre of high performance machines … Read more