Unifying Condition Numbers for Linear Programming

In recent years, several condition numbers were defined for a variety of linear programming problems based upon relative distances to ill-posedness. In this paper we provide a unifying view of these condition numbers. To do so, we introduce yet another linear programming problem and show that its distance to ill-posedness naturally captures the most commonly … Read more

A primal-dual symmetric relaxation for homogeneous conic systems

We address the feasibility of the pair of alternative conic systems of constraints Ax = 0, x \in C, and -A^T y \in C^*, defined by an m by n matrix A and a cone C in the n-dimensional Euclidean space. We reformulate this pair of conic systems as a primal-dual pair of conic programs. … Read more

A characterization of the distance to infeasibility under block-structured perturbations

We discuss several generalizations of the classical Eckart and Young identity. We show that a natural extension of this identity holds for rectangular matrices defining conic systems of constraints, and for perturbations restricted to a particular block structure, such as those determined by a sparsity pattern. Our results extend and unify the classical Eckart and … Read more

Two properties of condition numbers for convex programs via implicitly defined barrier functions

We study two issues on condition numbers for convex programs: one has to do with the growth of the condition numbers of the linear equations arising in interior-point algorithms; the other deals with solving conic systems and estimating their distance to infeasibility. These two issues share a common ground: the key tool for their development … Read more