Optimized methods for composite optimization: a reduction perspective

Recent advances in convex optimization have leveraged computer-assisted proofs to develop optimized first-order methods that improve over classical algorithms. However, each optimized method is specially tailored for a particular problem setting, and it is a well-documented challenge to extend optimized methods to other settings due to their highly bespoke design and analysis. We provide a general … Read more

Accelerating Proximal Gradient Descent via Silver Stepsizes

Surprisingly, recent work has shown that gradient descent can be accelerated without using momentum–just by judiciously choosing stepsizes. An open question raised by several papers is whether this phenomenon of stepsize-based acceleration holds more generally for constrained and/or composite convex optimization via projected and/or proximal versions of gradient descent. We answer this in the affirmative … Read more