Geometry of First-Order Methods and Adaptive Acceleration

First-order operator splitting methods are ubiquitous among many fields through science and engineering, such as inverse problems, signal/image processing, statistics, data science and machine learning, to name a few. In this paper, we study a geometric property of first-order methods when applying to solve non-smooth optimization problems. With the tool of “partial smoothness”, we design … Read more

Convergence rates of Forward-Douglas-Rachford splitting method

Over the past years, operator splitting methods have become ubiquitous for non-smooth optimization owing to their simplicity and efficiency. In this paper, we consider the Forward–Douglas–Rachford splitting method (FDR) [10, 40], and study both global and local convergence rates of this method. For the global rate, we establish an o(1/k) convergence rate in terms of … Read more

Local Linear Convergence Analysis of Primal–Dual Splitting Methods

In this paper, we study the local linear convergence properties of a versatile class of Primal–Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these Primal–Dual splitting methods. … Read more